Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nucleic Acids Res ; 50(5): 2509-2521, 2022 03 21.
Article in English | MEDLINE | ID: covidwho-1722548

ABSTRACT

Upon SARS-CoV-2 infection, viral intermediates specifically activate the IFN response through MDA5-mediated sensing and accordingly induce ADAR1 p150 expression, which might lead to viral A-to-I RNA editing. Here, we developed an RNA virus-specific editing identification pipeline, surveyed 7622 RNA-seq data from diverse types of samples infected with SARS-CoV-2, and constructed an atlas of A-to-I RNA editing sites in SARS-CoV-2. We found that A-to-I editing was dynamically regulated, varied between tissue and cell types, and was correlated with the intensity of innate immune response. On average, 91 editing events were deposited at viral dsRNA intermediates per sample. Moreover, editing hotspots were observed, including recoding sites in the spike gene that affect viral infectivity and antigenicity. Finally, we provided evidence that RNA editing accelerated SARS-CoV-2 evolution in humans during the epidemic. Our study highlights the ability of SARS-CoV-2 to hijack components of the host antiviral machinery to edit its genome and fuel its evolution, and also provides a framework and resource for studying viral RNA editing.


Subject(s)
COVID-19/immunology , Immunity, Innate/immunology , RNA Editing/immunology , SARS-CoV-2/immunology , Adenosine Deaminase/genetics , Adenosine Deaminase/immunology , Adenosine Deaminase/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Base Sequence , Binding Sites/genetics , COVID-19/genetics , COVID-19/virology , Evolution, Molecular , Gene Expression/immunology , Humans , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon-Induced Helicase, IFIH1/metabolism , Mutation , Protein Binding , RNA Editing/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sequence Homology, Nucleic Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
2.
Genes (Basel) ; 13(1)2021 12 23.
Article in English | MEDLINE | ID: covidwho-1580896

ABSTRACT

ADAR1-mediated deamination of adenosines in long double-stranded RNAs plays an important role in modulating the innate immune response. However, recent investigations based on metatranscriptomic samples of COVID-19 patients and SARS-COV-2-infected Vero cells have recovered contrasting findings. Using RNAseq data from time course experiments of infected human cell lines and transcriptome data from Vero cells and clinical samples, we prove that A-to-G changes observed in SARS-COV-2 genomes represent genuine RNA editing events, likely mediated by ADAR1. While the A-to-I editing rate is generally low, changes are distributed along the entire viral genome, are overrepresented in exonic regions, and are (in the majority of cases) nonsynonymous. The impact of RNA editing on virus-host interactions could be relevant to identify potential targets for therapeutic interventions.


Subject(s)
Adenosine Deaminase/genetics , COVID-19/genetics , Genome, Viral , Host-Pathogen Interactions/genetics , RNA Editing , RNA, Viral/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2/genetics , Adenosine/metabolism , Adenosine Deaminase/immunology , Animals , COVID-19/metabolism , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , DEAD Box Protein 58/genetics , DEAD Box Protein 58/immunology , Deamination , Epithelial Cells/immunology , Epithelial Cells/virology , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Inosine/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/immunology , Interferon-beta/genetics , Interferon-beta/immunology , RNA, Double-Stranded/genetics , RNA, Double-Stranded/immunology , RNA, Viral/immunology , RNA-Binding Proteins/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Transcriptome , Vero Cells
3.
Infect Genet Evol ; 97: 105188, 2022 01.
Article in English | MEDLINE | ID: covidwho-1568934

ABSTRACT

The best and most effective way to combat pandemics is to use effective vaccines and live attenuated vaccines are among the most effective vaccines. However, one of the major problems is the length of time it takes to get the attenuated vaccines. Today, the CRISPR toolkit (Clustered Regularly Inerspaced Short Palindromic Repeats) has made it possible to make changes with high efficiency and speed. Using this toolkit to make point mutations on the RNA virus's genome in a coculture of permissive and nonpermissive cells and under controlled conditions can accelerate changes in the genome and accelerate natural selection to obtain live attenuated vaccines.


Subject(s)
COVID-19 Vaccines/genetics , COVID-19/prevention & control , CRISPR-Cas Systems , Gene Editing/methods , Mutation Rate , SARS-CoV-2/genetics , Viral Proteins/genetics , APOBEC Deaminases/genetics , APOBEC Deaminases/immunology , Adenosine Deaminase/genetics , Adenosine Deaminase/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , COVID-19/immunology , COVID-19 Vaccines/biosynthesis , Endonucleases/genetics , Endonucleases/immunology , Gene Expression , Genome, Viral , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Selection, Genetic , Vaccines, Attenuated , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL